
Title Large genome de novo assembly with bi-directional BWT

Author(s) Liu, Binghang; 劉兵行

Citation

Issued Date 2015

URL http://hdl.handle.net/10722/225227

Rights The author retains all proprietary rights, (such as patent rights)
and the right to use in future works.

Abstract of thesis entitled

“Large genome de novo assembly with
bi-directional BWT”

Submitted by

Binghang Liu

for the degree of Master of Philosophy
at The University of Hong Kong

in August, 2015

De novo genome assembly is a fundamental problem in genomics research.

When assembling large genomes, time is often a very important concern, and

one might have no choice but to use a more efficient assembler like SOAPden-

ovo2 instead of a high-quality but prohibitively slow assembler (e.g., SPAdes).

Yet SOAPdenovo2 has inherent difficulty to utilize the full advantage of longer

reads (say, 150bp to 250bp from Illumina HiSeq and MiSeq). Other assemblers

that are based on string graphs (e.g., SGA), though less popular and also very

slow, are indeed more favorable for longer reads.

In this thesis, I mainly present a new contig assembler called BASE, based

on a seed-extension approach. It exploits an efficient indexing of reads to

generate adaptive seeds with high probability of unique appearance in the

genome and high sequencing quality. Guided by these seeds, BASE constructs

extension trees and gradually removes the branches with a method called

reverse validation, which utilizes information about read coverage and paired-

end relationship to obtain consensus sequences of reads sharing the seeds.

These consensus sequences are further extended to form high quality contigs.

Benchmark on several bacteria and human datasets demonstrates the perfor-

mance advantage of BASE in speed and assembly quality when longer reads

are used. Our first benchmark was based on two datasets of deeply sequenced

bacteria genomes (240X) with read length of 100bp and 250bp. Especially for

250bp reads, BASE performs much better than SOAPdenovo2 and SGA and

is similar to SPAdes in performance. Regarding speed, BASE is consistently

a few times faster than SPAdes and SGA, but still slower than SOAPde-

novo2. We have further compared BASE and SOAPdenovo2 using human

binghangliu@gmail.com
http://www.hku.hk

genome datasets with read length 100bp, 150bp and 250bp. BASE consis-

tently achieves a higher N50 for all datasets; while the improvement becomes

more significant when read length reaches 250bp. SOAPdenovo2 uses rela-

tively more memory when sequencing error is high.

BASE is an efficient assembler for contig construction, with significant im-

provement in quality for long NGS reads. It could be easily extended to

support scaffolding in the near future.

(340 words)

Large genome de novo assembly

with bi-directional BWT

by

Binghang Liu

Department of Computer Science

The University of Hong Kong

Supervised by

Prof. Tak-Wah Lam

A thesis submitted in partial fulfillment of the requirements for

the degree of Master of Philosophy in Computer Science

at The University of Hong Kong

August, 2015

binghangliu@gmail.com
http://www.cs.hku.hk
http://www.hku.hk
mailto:twlam@cs.hku.hk
http://www.hku.hk
Chenchen
Typewritten Text
(劉兵行)

Chenchen
Typewritten Text

Chenchen
Typewritten Text

Chenchen
Typewritten Text

Chenchen
Typewritten Text

Chenchen
Typewritten Text

Declaration

I declare that this thesis represents my own work, except where due acknowl-

edgement is made, and that it has not been previously included in any thesis,

dissertation or report submitted to this university or any institution for any

diploma, degree or other qualifications.

Signed:

Binghang Liu

August, 2015

i

binghangliu@gmail.com

Acknowledgements

I would like to thank my supervisor Prof. Tak-Wah Lam. Prof. Lam gave

me this precious chance to return school after four years work in BGI. He is

so nice and patient to allow me to continue my researches even they are not

well explained. I feel really sorry to miss the chances to prove myself and let

him disappointed on me. He helped me to be self-confident again although

the process is great of painful. I appreciate these invaluable supports.

Especially, I thank Ruibang Luo sincerely. He is my direct leader in BGI

and in HKU-BGI Bioinformatics Algorithms and Core Technology Research

Laboratory. I appreciate his supports in the past years. He is also a good

brother for now and for the future.

I am also thankful to Dr. Hing-Fung Ting, Dr. Siu-Ming Yiu for their many

useful advices and kindly help.

I thank the members of the HKU-BGI Bioinformatics Algorithms and Core

Technology Research Laboratory. Li Dinghua, Liu Chi-Man and Ye Yongtao

support a lot directly on my researches. Liu Xuan, my officemate, helped

me to get familiar with HKU and to persist in the most difficult time. Wu

Haiyang, He Guangzhu, Ou Min, Law-Wai Chun, Wang Heng, Mai Huijun,

Fang Ping, I will miss them all and remember the happy days with them.

I thank my leaders in BGI, Yingrui Li, Hancheng Zheng, without their direct

support, I certainly have no chance to study in Hong Kong.

Last but not least, my great thanks to my parents, my wife, my son, my two

brothers and all my friends who always keep helping out and supporting me.

Remarks. This thesis is a joint work with Tak-Wah Lam, Ruibang Luo, Chi-

Man Liu and Dinghua Li, which appeared in International Symposium on

Bioinformatics Research and Applications (ISBRA), 2015. This research has

also been submitted for a special issue of this conference in BMC Bioinformat-

ics upon invitation. Specially, thanks to Dr. Hing-Fung Ting for presenting

the paper on behalf of me in the ISBRA2015 conference (as I couldn’t attend

the conference due to visa issue).

ii

Contents

Declaration i

Acknowledgements ii

Table of Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Background . 1

1.2 Genome assembly methods . 2

1.2.1 Overlap-Layout-Consensus (OLC) method 3

1.2.2 De Bruijn Graph method 4

1.2.3 Seed-Extension method 6

1.2.4 Assembly challenge of repetitive sequences 6

1.3 Application of bi-directional BWT 8

1.3.1 Introduction to bi-directional BWT 8

1.3.2 String matching with bi-directional BWT 9

1.3.3 Contig assembly with BWT of reads 10

1.4 Contributions . 11

2 Algorithm 15

2.1 Preliminary . 15

2.2 Seed-extension assembly framework 17

2.3 Seed selection . 18

2.4 Extension tree and its simplification 19

iii

Contents iv

2.5 Application of paired-end information 22

2.6 Complexity . 23

3 Implementation 25

3.1 Abundance controlling . 25

3.2 Multiple threads . 27

4 Benchmarks and evaluation 30

4.1 Datasets . 30

4.2 Evaluation . 30

4.3 Contig assembly of deeply sequenced bacterial genomes 31

4.4 Contig assembly of human genomes 32

4.5 Influence of read length on assembly 34

5 Conclusion 37

6 Discussion and Future Work 39

Bibliography 43

List of Figures

1.1 Comparison of three main assembly algorithms 13

1.2 Depth distribution of k-mers in NGS reads 14

2.1 Overview of the seed-extension strategy in BASE 17

2.2 Decreasing of depth with the increasing of seed length 19

2.3 Remove branches in backward extension tree 21

2.4 Application of paired-end information to remove branches in
extension tree . 23

3.1 Marking used reads in seed-extension 26

3.2 Bits for bi-directional BWT 28

3.3 CAS operation to mark read as used 29

4.1 17mer depth distribution of three human sequencing dataset . 35

6.1 Two pipelines for genome assembly using BASE 42

v

List of Tables

4.1 Contig assembly of deeply sequenced bacterial genomes 32

4.2 Summary of human contig assembly 33

4.3 Mismatches analysis for human genome assembly 33

4.4 Performance for human genome assembly 34

4.5 Assembly of E.coli simulated data 36

vi

Chapter 1

Introduction

1.1 Background

Fast development and application of next generation sequencing (NGS) tech-

nologies including Roche 454, Illumina and Solid have generated PB level

genomic data within the past 10 years. Hundreds of thousands of species

are under sequenced for the first time to assemble their reference sequences.

Meanwhile, the assembled sequences are also used to detect variations when

given the reference sequences. Genome assembly is considered as a one of the

basic computational areas in bioinformatics.

The genome assembly problem is concerned with the reconstruction of the

genome sequence (denoted S below) from sequencing data, usually in the form

of a large collection of short reads (denoted as R below), which randomly

cover the whole genome with sufficient depth. Because of the double-helix

structure of DNA, ideally, any R or its reverse complemented sequence should

be a substring of S. Due to the limitation of sequencing technologies, R is

usually much shorter than S, some reads are found to appear in many different

places in S, and they are named as repetitive sequences, which cause the basic

challenge of assembly. Generally, paired-end sequencing strategy is used to re-

cover much longer repetitive regions, then genome assembly problem is divided

into two typical problems, such as contig assembly problem, which is to layout

reads by overlaps among them to obtain longer continuous sequences, and

1

Chapter 1. Introduction 2

scaffolding problem, which is to layout the contigs with paired-end reads by

determining the relative order, orientation and distance among contigs[33, 43].

Here in this thesis, I mainly talk about contig assembly problem.

After more than 30 years development, lots of famous contig assemblers are

implemented on three main algorithms such as overlap graph/string graph,

de Bruijn graph and seed-extension based methods. For NGS data, the past

few years have witnessed a number of improved denovo genome assemblers,

providing users choices between speed and accuracy [6]. The more recent NGS

technologies have gradually increase the read length beyond 100bp (e.g., 150bp

from HiSeq and 250 - 400bp from MiSeq), yet existing efficient assemblers

do not have much improvement regarding accuracy, and it is still up to the

challenge how to better utilize the advantage of read length to achieve a fast-

and-accurate assembler.

In this thesis, I provide a new assembler BASE for longer NGS data. By bet-

ter utilizing the read length information, BASE can obtain better assemblies

than some famous short read assemblers. In the following chapters, I firstly

review the development of assembly methods, then show the design of algo-

rithms and its implementation in BASE, and finally I use BASE to assemble

deeply sequenced bacteria sequencing datasets and human genome sequencing

datasets with different read length, and compare it with some famous NGS

assemblers including SOAPdenovo2, SGA and SPAdes.

1.2 Genome assembly methods

The most challenging aspect of genome assembly problem is to obtain the

layout or order of reads which is mostly consistent with the overlaps among

them. The assembled sequences by joining the layout reads, without gaps or

unknown base pairs, are named as contigs. It has been developed for more

than 30 years to solve this problem using different generations of sequencing

data.

Chapter 1. Introduction 3

1.2.1 Overlap-Layout-Consensus (OLC) method

Contig assembly problem became acute on the basis of statistical analy-

sis by Lander Waterman in 1988[24]. In this research, length and amount

of assembled contigs could be estimated by sequencing coverage or depth

(c), read length (l), and minimum overlap size. Later in 1995, Eugene W.

Mayers[41] summarized the 10 years development of overlap-layout-consensus

(OLC) strategy to assemble contigs and provided a graph view to layout.

This method was further utilized in Celera assembler to assemble Drosophila

genome in 2000 with Sanger sequencing data[43]. Even in 2010s, genomes,

such as tomato[10], which was sequenced by Roche 454 and Sanger, are still

assembled with OLC based Newbler and CABOG.

In the OLC strategy, every read is compared in two orientations to obtain

overlaps among reads. If the suffix of one read has high similarity with the

prefix of another read, we name the high similar regions as overlap, showing

the relationship between these two reads. After constructing the overlap graph

(read as vertex and overlap as edge), layout is to select the subsets of overlaps,

which determine the orders of reads. Finally, multi-alignment of reads is

used to form a consensus-measure on each position to generate the consensus

character for this position. With the overlap graph, the global relationship

between reads could be taken into account, and as mentioned before, this

method performs quite well on 500-1000bp for Sanger sequencing and Roche

454 sequencing data. However, it is not so proper for Illumina and Solid

sequencing data, which is shorter than even 50bp before 2009. Based on

Lander-Waterman model, for shorter reads, higher sequencing depth is needed

to support long assemblies. This results in much larger amount of reads to

be assembled and brings greater computing challenges to build the overlap

graph. Then since 2007, for assembly of short Illumina reads, this strategy

has seldom been used.

In 2005, before the burst of NGS assemblers after 2008, Mayers published

another research on string graph based assembly[42]. In string graph, reads

overlap graph with bi-directional edges are constructed, then transitive edges

are removed with a linear time reduction algorithm. After replacing the paths

formed by all internal vertices (with single-in and single-out degree) with sin-

gle composite edges, a read coherent string graph is formed. Then contigs

Chapter 1. Introduction 4

sequences will be obtained after simplification of this graph. In this string

graph, however, computational challenge of read alignment was still not effi-

ciently solved, and then it had not been used for NGS reads assembly until

2010. In this year, Simpson published SGA[47], a string graph based assembler

for NGS reads, could assemble human genome by constructing string graph

directly from the FM-index of reads[48]. After that, some similar assemblers

were developed, such as Fermi[28] and Readjoiner[14]. However, although the

memory costs are much lower than de Bruijn Graph based assemblers, they

cost too long time for large genome assembly.

Like OLC based assemblers, a proper minimum overlap size is required in

string graph based assemblers to reduce the complexity of graph and to im-

prove the connectivity of graph. Smaller minimum overlap size will increase

the probability that the overlap sequence falls within a repetitive region of

the genome, thus brings much more branches in the graph and might result

in shorter contigs. Meanwhile, according to the Lander-Waterman model[24],

larger minimum overlap size leads to a reduction of sufficient support for

overlap among reads, thus enhance the demand for higher sequencing depth.

Therefore, due to the variation in length of repetitive sequences in genome,

it is difficult to find a fixed minimum overlap size that fits each specific case

especially when the NGS read is not so long.

1.2.2 De Bruijn Graph method

Also in 1995, Idury and Waterman published the idea of sequence graph[18],

which is to build a k-tuples’ graph and perform Eulerian tours to infer the

underlying sequence. Later in late 1990s and early 2000s, the group of Pevzner

used de Bruijn graph to assemble contigs with sequencing by hybridization

(SBH) data and published their assembler Euler[45]. In 2008, Danniel used

their graph structure and published Velvet[53], which is generally considered

as the first successful de Bruijn graph based assembler for NGS reads. In this

research, sequencing errors and heterozygsis regions are designed to be recog-

nized with graph structures like tips and bubbles. After that, SOAPdenovo[36],

ALLPATHS-LG[13] and Abyss[49] also use de Bruijn graph to assemble large

Chapter 1. Introduction 5

genomes and achieve quite well balance between assembly length, accuracy

and computational efficiency.

In these DBG based assemblers, reads are chopped into a sequence of over-

lapping k-mers with two adjacent k-mers overlapped by k-1 nucleotides. In

de Bruijn graph, vertexes are k-mers and edges are the transitions among

k-mers[33, 53]. Reads are not directly used except helping simplify the DBG

graph. The DBG based method works well for assembly of deeply sequenced

short reads, especially for avoiding calculating overlaps between reads. But

it cannot handle well the repetitive sequences that are longer than k. With

various lengths of repetitive sequences in genome, larger k size is promised

to assemble longer repetitive regions. Based on Lander-Waterman model,

increased k size needs higher sequencing depth to support the continuous cov-

erage of k-mers. Meanwhile, increased k size will worsen the influence of

sequencing errors and heterozygous regions, which could increase the memory

cost to construct the graph and shorten the assembly length[36]. This problem

brings great challenge in practice to find the best proper k size for assembly.

To solve this problem, multiple k-mer strategies like IDBA-UD[44] and SPAdes[4]

were developed. In these methods, de Bruijn graphs will be rebuilt for many

times with k size increasing distinctly. In this way, small k-mers are used to

remove most of sequencing errors, treat heterozygous regions and avoid the

break of continuous in low coverage regions. Large k-mers are used to solve

longer repetitive regions. Yet this requires multiple constructions of DBG

and much longer running time, limiting their application for the assembly for

relative large genome.

When NGS reads are longer, it is natural to consider using a larger k or using

the multiple k-mer strategies. For large genome assembly, SOAPdenovo2 cur-

rently only supports maximum 127mer, which is a great waste for 250bp or

300bp reads. For multiple k-mer methods, it’s not an easy task to determine

the increase of k sizes and the maximum k size. Considering the variation

of real sequencing depth and variation of repetitive length for different re-

gions, there is no method to find a ideal k size for each region to balance the

requirement from sufficient coverage and repetitive assembly.

Chapter 1. Introduction 6

1.2.3 Seed-Extension method

Besides these two graph based methods, seed extension based assembly method

also has a long history. Amount of assemblers are based on it, such as the first

one for assembly of NGS reads, SSAKE[50] et al. In SSAKE, reads are kept

in hash table with unique sequencing reads as key and frequency as value. A

prefix tree is constructed to accelerate the collecting of overlapped reads for a

suffix of the extending read. Then in one unassembled read, it finds a suffix,

collects reads containing this suffix with prefix tree, obtains the extended se-

quences, finds a new suffix in the extended sequences and repeats the process

until no more extension is possible or conflictions are met, i.e. two or more

un-overlapped reads could continue this extension.

This extension method is termed as greedy, because it generally makes de-

cisions only to optimize the local objective function and does not lead to a

global optimization[46]. A heuristic algorithm is usually used to determine

the appropriate extension, which relays on the overlap with highest quality

(longer in length and fewer in mismatches). This might bring false-assembly

in some repetitive regions.

Recently, machine-learning methods such as supporting vector machine are

used to determine extension[55], which might be a promising direction for

further development of this strategy to obtain high quality assembled contigs.

1.2.4 Assembly challenge of repetitive sequences

Treatment of repetitive sequences is a common challenge for any assembly

problem. As shown in Figure 1.1, there is a repetitive unit with two copies A

and B in genome. After sequencing, we obtain reads r1-7 related with these

two copies. Then we discussed the treatment ideas from these three assembly

methods.

From this figure, we can summarize the factors that determine the assembly

of repetitive sequences:

1) Read length. This is the basic factor determining how long repetitive

sequences could be well assembled. Longer reads is better in the view of

Chapter 1. Introduction 7

repetitive sequences, but read accuracy is also important to choose algorithms

and further determines the length of assemble sequences.

2) Minimum overlap size or k-mer size. When minimum overlap size is larger,

there will be no confliction after r4. But there will also be only r6 left over-

lapped with r1, which might result in false assembly. When k size is larger

than repetitive sequence, Copy B will be well assembled, but Copy A will be

probably lost. Then in practice, many different values of k size or minimum

overlap size will be tested to find the optimal one, which can obtain the longest

assemblies.

3) Sequencing depth. When sequencing reads cover the genome efficiently

enough, there would be kinds of reads covering Copy A like Copy B. Then

there might be more reads having longer overlaps with r1, so larger minimum

overlap size or k size could be used to solve longer repetitive regions. There

might also be reads like r5 connecting a-Copy A-b, so even we use small k size,

we can also solve this repeat with Rock-Band algorithm[53].

4) Features of repetitive sequences. As shown in the supplementary file of

SOAPdenovo2[36], genomes of different species have different content of exact

copied sequences and different content of inexact copied sequences. The later

one can be easily noised by sequencing errors and heterozygous regions when

the mismatches or indels are accepted in overlap regions. Topology structures

like “Tips”, “bubbles” are recognized in de Bruijn graph assemblers including

velvet[53] and SOAPdenovo[33] and are used to treat sequencing errors and

assembly of heterozygous regions. Simpson in SGA also implemented this idea

as mentioned in his PhD thesis. This treatment is really important to obtain

high quality contigs.

In summary, when we know the sequenced genome is rich in repetitive se-

quences, we should improve the sequencing depth and read length to use

larger k size in de Bruijn graph assemblers or larger minimum overlap size in

overlap/string graph assemblers. However, not all the genome regions will be

covered equally especially for the reasons of sequencing bias [5, 9] and most

of the repetitive lengths are not the same, so same k size or minimum overlap

size will not be the best choice for local assembly of different regions.

Chapter 1. Introduction 8

1.3 Application of bi-directional BWT

1.3.1 Introduction to bi-directional BWT

Barrow and Wheeler invented a data transformation for data compression

named as Burrows-Wheeler transform (BWT) in 1994[7]. For a string T with

length n over an alphabet Σ, we add a unique special character ‘$’ as the last

character of T , which is the smallest among characters in Σ. Then we obtain all

the suffixes of T , sort them lexicographically and obtain suffix array SA[0, n-1]

of T such that SA[i] stores the starting position of the i-th-lexicographically

smallest suffix. The BWT of T is a string with same length to T and BWT [i]

is equal to T [SA[i]-1].

Later in 2000, Ferragina and Manzini used BWT to support string pattern

matching[12]. Let S as the substring of T , and is the shared prefix of suffixes

between SA[i] and SA[j]. Here range [i, j] is named as SA range of string S.

Given the SA range [i, j] of S, for string matching, the challenge is how to

find the updated SA range [p,q] of cS, in which c is a character in Σ. Ferragina

and Manzini proved that:

p = C(c) + occ(c, i− 1) + 1

q = C(c) + occ(c, j)

Where C(c) is the total amount of characters in T , which are smaller than c.

Occ(c, i) is the total occurrence of c in BWT [0..i]. If p is no larger than q,

cS is a substring of T . C(c) could be pre-computed, and Occ(c, i) could be

obtained in a constant time using the data structure introduced by Ferragina

and Manzini[22]. With this text indexing method (named as FM-index), it is

possible to obtain the SA range of cS in a constant time. This process is the

backward search with BWT.

To support backward searching, forward searching and interleaving between

them, which might be used in approximate pattern matching, Lam et al.

introduced bi-directional BWT in 2009[23]. It is formed by BWT of T and

BWT of TR (the reversal of T). Then for substring S, we also define SA′

Chapter 1. Introduction 9

range of SR w.r.t. TR. Now for S, given SA range and SA′ range, for any

character c, they proved to obtain the updated SA range and SA′ range of

cS (backward search), as well as the SA range and SA′ range Sc (forward

search) in constant time. In this way, BWT could be used in NGS mapping

to genome references using edit distance, which allows insertion and deletions,

while keeping the cost of memory reasonably small.

Besides for reference sequences, many researches have been focusing on the

construction of BWT of NGS reads. In 2010, Simpson firstly developed a

method to building the FM-index for reads R and FM-index for the reversed

reads R′, after constructing the SA for R and SA′ for R′ respectively[47].

However, this method took 32 hours with 132 processors to construct the FM-

index of near 40X human NGS reads. In 2014, Liu Chi-Man [35] developed a

method to construct the BWT of human 30X sequencing data costing only 6

hours with the acceleration of GPU. BWT of NGS reads was firstly used for

genome assembly and recently has been used for variation calling[20]. In this

research, we used the improved version of BWT construction method of Liu

Chi-Man to assemble NGS reads.

1.3.2 String matching with bi-directional BWT

Within the past many years, read mapping to reference sequences is the main

application of BWT in bioinformatics. In 2007, Hon et al.[17] introduced a

method to construct BWT and could construct BWT of human references

within 50 min using <1 GB peak memory. Later Lam et al. developed BWT-

SW in 2008[22] to speed up the Smith-Waterman local alignments between

DNA sequences. In 2009, BWA from Li Heng[29] and SOAP2 (based on

bi-directional BWT) from Li Ruiqiang[31] were developed to mapping NGS

reads to human reference sequences. Both of them were times faster than

previous hash-based NGS reads mapper MAQ[30] and SOAP[32]. Until now,

BWT based aligners such as Bowtie2[25], BWA[29] and SOAP (SOAP2[31],

SOAP3[34] and SOAP3-dp[37]) are the main tools for mapping NGS reads to

reference.

The first application of BWT of reads is for read-read alignment. With the

FM-index of reads R, for read X with length l, we can obtain the reads

Chapter 1. Introduction 10

overlapped with the suffix of X and the overlap length is larger than minimum

overlap length τ . Using backward search, we can start at X[l-1] and find the

SA ranges for X[l-1], X[l-2,l-1], X[l-3...l-1], ... , X[l−τ ...l-1] gradually. If the

size of SA range [i, j] for X[l-τ ...l-1] is larger than 0, then we say there are

(j-i+1) reads overlapped with read X. This idea is used in SGA for collecting

overlapped reads and constructing string graph directly[47].

1.3.3 Contig assembly with BWT of reads

Given the BWT of NGS reads, string graph method has already been im-

plemented in SGA[47] and Fermi[28]. They both have the parameter min-

imum overlap size and take long time for contig assembly. MegaHit[27], a

new assembler developed recently in our lab, used the BWT to construct de

Bruijn graph. By utilizing the multi-kmer idea from IDBA[44], it can do

meta-assembly quite well. Then the question is how to design an algorithm

to better use the advantages of BWT of reads.

One of the most important advantage of bi-directional BWT of reads is that

it can be used to obtain the SA ranges of any sequences (no longer than reads)

in linear time and the size of SA ranges is the number of reads containing this

sequence and its reversed-complement form. Given the length of a sequence

k (<= read length l), I define the depth of this sequence dk is the number

of reads containing this sequence and is equal to the size of SA ranges in

bi-directional BWT. As discussed above, we can also use this depth dk to

infer the uniqueness of sequence with length k. If this sequence is unique,

it means this sequence only has one copy in genome. This means for any

overlapped sequences among reads, it is possible to infer the uniqueness with

bi-directional BWT.

In this way, with bi-directional BWT, it is possible to increase the threshold

of minimum overlap size until it is longer than length of repetitive sequence

in overlap region. Comparing to multi-kmer method, which using the dis-

crete size of k-mers to solve repetitive sequences shorter than them, with bi-

directional BWT, we can find the proper k size to solve repetitive sequences

in a continuous way.

Chapter 1. Introduction 11

One of our aims is to use this advantage in our new assembler. The straight-

forward idea is to construct overlap graph or string graph. In order to tolerant

sequencing errors within reads, we need to infer sub-sequences covering all the

bases in reads. To reduce time complexity for large genome assembly, I imply

the seed-extension strategy. Seeds have adaptive length to make sure they

are inferred to be unique or say having only one copy in the whole genome.

With bi-directional BWT, reads containing this seeds can be collected and

recovered. While, instead of re-generate the read sequences, I build up a tree

structure with branches to show the inconsistence among reads when backward

searching with BWT. Then the extension process is to remove the branches

in tree and obtain the final consensus sequences as newly extended regions.

In the following chapters, the details of this method will be further explained

and discussed.

1.4 Contributions

In this thesis, I proposed a new large genome contig assembler BASE, which

fits for the longer NGS reads.

With bi-directional BWT, using seed-extension strategy, BASE finds seeds

by increasing the length continuously until they are inferred to be unique

in genome. In the assembly of each local region, the seed length is deter-

mined by balancing the requirement from the real sequencing depth and the

local repetitive sequence length. This overcomes the shortage of fixed k-mer

size in de Bruijn graph based assemblers and fixed minimum overlap size in

overlap/string graph based assemblers, thus it can obtain relatively long con-

tigs. Compared with traditional seed-extension assemblers, BASE acquired

the reverse-validation idea to recognize the sequencing error, repetitive se-

quence and heterozygous sites caused special structures which are also rec-

ognized in de Bruijn graph based assemblers, so BASE can obtain accurate

contigs. Compared with multi-kmer methods, in which k-mer size is prac-

tically increased discretely, by considering the local real sequencing depth,

BASE avoid the over-treating of repetitive sequences with inefficient coverage

for certain k size. So BASE can obtain contigs with higher accuracy while

costing less time.

Chapter 1. Introduction 12

In practice, as shown in the following chapters of this thesis, assembly of deeply

sequenced bacteria datasets suggested the high accuracy assembly of BASE

and the performance on four human datasets showed that BASE performs bet-

ter than contig assembly of SOAPdenovo2 especially on 250bp HiSeq dataset.

Recent practices in BGI, the largest sequencing center in world, BASE can

assemble some plant genomes and obtain contigs much longer than those from

SOAPdenovo2. New version of BASE is still under-developed to obtain better

assembly for a plant with 14Gbp genome size.

Chapter 1. Introduction 13

Copy A Copy B 5’ 3’ a b c d

r1
r2

r3

r4
r5 r6 r7 δ

A

D r1
r6

δ

r1

r6

Best alignment first

r1
r6

r2
δ

B
r7

r2
r7

r1
r6

r2
δ

Transitive reduction

C
a b

c d
r5

a b

c d
r5

Rock Band algorithm

Figure 1.1: Comparison of three main assembly algorithms. (A) There is
one repetitive sequence with two same copies (Copy A and Copy B) in the
whole genome. After sequencing, we get three reads (r1, r2, r3) covering
Copy A and four reads (r4, r5, r6 and r7) covering Copy B. The minimum
overlap size is δ. (B) In overlap/string graph based assemblers, given min-
imum overlap size δ, for r1, there would be r2, r6 and r7 overlapped with
it. Because r2 is not overlapped with r6 and r7 is overlapped to r6, after
transitive reduction, only r2 and r6 are left for r1. For this confliction, con-
tigs will stop here. This is the reason why minimum overlap size should be
larger than the length of repetitive sequences. When the minimum overlap
size is larger than the overlap size between r1 and r6, there will be no reads
overlapped with r1 left and contig will also stop here. (C) In de Bruijn
graph based assemblers, a butterfly structure will be formed around repet-
itive sequence, theoretically with two out and two in. Because r5 covers
Copy B and connects branch c and branch d together, using Rock-Band
algorithm, we can obtain a contig connecting c-Copy B-d together. (D) In
seed-extension assemblers, for r1, we collect overlapped reads r2, r6 and
r7. However, we dont know whether r2 is overlapped with r6 or r7. In the
simplest extension strategy, we choose r6, which has the best alignment

with r1. But this is sure a false extension for r1.

Chapter 1. Introduction 14

0.0E+00	

5.0E+04	

1.0E+05	

1.5E+05	

2.0E+05	

2.5E+05	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Fr
eq

ue
nc
y

Depth

uniqueness region

Error_cutoff Repeat_cutoff

Figure 1.2: Depth distribution of k-mers in NGS reads. When the depth
values are smaller than Error cuttoff, k-mers might contain error bases.
When the depth values are larger than Repeat cutoff, they might have a
quite high probability from the repetitive regions of the genome. Then
the k-mers, of which the depth values fall in the uniqueness region, are

inferred-unique k-mers.

Chapter 2

Algorithm

2.1 Preliminary

Given a set of reads R =R0, R1, ..., Rn−1, where each Ri has a length l and

is terminated with a sentinel symbol ‘$’ (i.e., Ri[l] = $). For convenience, we

also define Ri[-1] = $, and for tie-breaking purpose, Ri[l] is smaller than Rj[l]

if i is smaller than j.

Let SuffR = Ri[j...l] | 0 < i < n and 0 < j < l be all possible suffices of reads in

R. The suffix array SAR of R is defined as SAR[k] = (i, j) if Ri[j...l]is the k-th

lexicographical smallest suffix in SuffR. The BWT of R is an array defined by

BWTR[k] = Ri[j-1] if SAR[k] = (i, j).

Given a string P , the SA range [lR(P), uR(P)] of P w.r.t. R is defined as

follows:

• lR(P) = min { k | SAR [k] = (i, j) and P is a prefix of Ri [j...l] }

• uR(P) = max { k | SAR [k] = (i, j) and P is a prefix of Ri [j...l] }

In any context, SA range with lR(P) > uR(P) means that P is not a substring

of any reads in R.

For any string P , let P ′ denote its reverse sequence and RC (P) denote its

reverse complement sequence. We store the BWT of R, as well as the revBWT

15

Chapter 2. Algorithm 16

of R′ (the reverse of R). The SA’ range of a string P is defined as [l′R(P ′),

u′R(P ′)]. Given the BWT of R and revBWT of R′ forming bi-directional BWT,

the following operation can be done in constant time[23]:

• For any string P and a character c in {A, C, G, T, $}, calculate the SA

range of cP from the SA range of P .

• For any string P and a character c in {A, C, G, T, $}, calculate the SA

range and the SA’ range of cP (or Pc) from the SA range and the SA’

range of P .

Due to the double-strand nature of DNA, we introduce the term intact SA

range (ISR) of a DNA sequence P , which is the combination of: a) the SA

range of P in R, b) the SA range of RC(P)in R, and c) the SA’ range of

RC(P) in R. Then the intact SA range is denoted by ISR(P) = [lR(P),

uR(P), lR(RC(P)), uR(RC(P)), l′R(RC(P)), u′R(RC(P))]. With ISR(P), we

define the depth of P (with respect to the set R) as follows:

Dep(P) = max{0, uR(P) - lR(P)+1} + max{0, u′R(RC(P)) - l′R(RC(P))+1}

According to the functionality of bi-directional BWT described above, for

P=P [0...m], the depth values of P [m], P [m-1...m], ..., P [0...m] can be cal-

culated incrementally by updating their ISRs. Symmetrically, the depth of

P [0], P [0...1], ..., P [0...m] can also be calculated incrementally by updating

the ISRs of RC(P [0]), RC(P [0...1]), ..., RC(P [0...m]) incrementally.

To make bi-directional BWT of reads better fit for genome assembly, the

team in our lab also make the following modifications based on the published

version[35].

(a) A base is encoded with 4 bits using the last 3 bits to encode A, C, G,

T or the read terminal symbol $, and the first 1 bit to indicate whether

this base has a high sequencing quality with respect to a user-defined

threshold.

(b) Read ID (2i, 2i+1) is defined by the i-th pair of reads, and an auxiliary

table is used to record the mapping between a read ID and the position

of the $ in the BWT w.r.t this read. This enables fast recovery of read

Chapter 2. Algorithm 17

sequences and qualities in linear time. However, this method requires

that all reads have equal length.

(c) A new CPU-only implementation was developed and is compared the

GPU version.

2.2 Seed-extension assembly framework

Step 1: initialize by selecting initial seed
1.  Choose an initial read by sequencing quality.
2.  Select an initial seed in this read.

Initial Read Initial Seed

Initial Contig Extended Contig

Initial Seed New Seed

Red: sequencing error in reads

C C G G T T G

Step 2: BWT Alignment
1.  Get SA ranges for initial seed

Step 3: Backward search
1.  Construct extension tree.
2.  Keep read IDs when meeting $.

Step 4: Generate consensus
1.  Generate consensus of extended region.
2.  Mark the reads meeting $ as used reads.

Step 5: Extend contig and select new seed
1.  Add the extended sequence to initial contig.
2.  Select a new seed in extended contig.

Extended length

Initial Seed

Initial Seed

MinSeedLen=19

6
7

10

6

6

1

7
2

1

1
1

10

10

1

1

1

6 1

G

T

T $

$ $

$

C
A

A

G

G T
C

C C
C

Depth

Figure 2.1: Overview of the seed-extension strategy in BASE. There are
five steps for one direction extension. Firstly, we choose an initial read by
order and find an initial seed in this read. Then we use bi-directional BWT
to get the SA ranges of this seed using backward exact matching. Thirdly,
we build up a backward extension tree by adding bases to continue the
backward matching. After removing erroneous branches and heterozygosis
branches, we obtain the consensus sequence of the extended region. Finally,
we continue to find a new seed in the extended region and extend iteratively.

To implement the idea invoked in Chapter 1, here I adopted the seed-extension

strategy and developed a new assembler BASE. As shown in Figure 2.1, there

are five steps: initialize contigs by finding an starting seed, obtain the SA

ranges of this seed, construct an extension tree using backward searching with

bi-directional BWT, generate consensus sequences from the extension tree and

find a new seed in the extended regions to extend iteratively. Technically, these

Chapter 2. Algorithm 18

five steps could be divided into two parts: seed selection (including selection of

initial seed and extended seed) and seed extension (including construction of

extension tree and its simplification to obtain consensus of extended sequence).

Then in the following paragraphs, these two parts will be discussed in detail.

2.3 Seed selection

An initial seed is a sub-sequence of a read and is used to initialize an extension.

An extended seed is a sub-sequence of an extended sequence and is used

to initialize a new iterative extension. The main idea of our seed selection

strategy is to select the seeds that have only one occurrence in the genome to

be assembled. In the context of de novo assembly, there is no way to calculate

the exact number of occurrences of a seed in the genome. Then I developed

the following method to guarantee a high probability to select one-occurrence

seeds, which we call inferred-unique seeds.

Let d be the average sequencing depth of a genome, and each read has length l.

Here I define the expected depth of a sub-sequence P with length k to be dk =

(l − k + 1) * d / l [5]. If Dep(P) (which is the depth of P calculated according

to ISR(P)) is no larger than z*dk, in which z is a user-defined parameter, P is

defined as an inferred-unique sequence, which means it is likely to occur only

once in the genome.

To find an inferred-unique seed in a read Ri or a previously extended sequence,

as shown in Figure 2.2, starting at the end and by using backward search men-

tioned above, we can update the ISRs and calculate the depth incrementally

until it achieves inferred-unique. For example, we find a seed in read Ri of

length l, we calculate the ISRs and depth of Ri[l-1], Ri[l-2,l-1],..., Ri[1...l-1]

and Ri[0...l-1]. Meanwhile, We also update the expected depth dl−j with j

decreasing from l-1 to 0. Then there would be two cases for the changes of

depth from these sub-sequences:

Case 1: The depth of Ri[j...l-1] is reduced to less than user-defined depth

threshold τ . This region Ri[j...l-1] would contain sequencing error or too long

repetitive sequence. Then we will further try to find seed in the substring

Ri[0...j-1].

Chapter 2. Algorithm 19

Case 2: The depth of Ri[j...l-1] is no larger than z * dl−j. Then sub-sequence

Ri[j...l-1] meets the requirement of inferred-unique and it will be treated as a

seed, then no more sub-sequences will be checked.

Each inferred-unique sub-sequence will be further checked to make sure the all

the bases in seed have high quality scores (using the 1-bit base quality stored

in BWT). Finally, we can obtain a high quality inferred-unique seed to invoke

the extension step.

0	

5	

10	

15	

20	

25	

30	

35	

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

1.E+07	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Ex
pe

ct
	
 d
ep

th
	

Lo
g	

re
al
/e
xp
ec
t	
 d

ep
th
	
 ra

1o
	

Sub-­‐sequence	
 length	

Depth	
 Decrease	
 with	
 increasing	
 sub-­‐sequence	
 length	

log(Real_depth1/Expect_depth)	

log(Real_depth2/Expect_depth)	

log(Real_depth3/Expect_depth)	

Expect_depth	

Extension direction

Expected depth dk

Real depth2

Real depth1

Real depth3

Seed1

Seed2

Seed3

dk = (l – k + 1) * d / l

Read (length=l)
sub-sequence

k=28

k=20

k=55

Figure 2.2: Decreasing of depth with the increasing of seed length. Using
backward searching in BWT, with the increasing of k size, the real depths
of seed1, seed2 and seed3 decrease gradually. In the meantime, we also
calculate the expected depth dk, and compare the real depth and expected
depth in time. When the real depths are suddenly similar to their expected
depths, we stop extensions to obtain the final initial inferred-unique seeds.
For regions with different repeat features and length, we can obtain seed1,
seed2 and seed3 with different length, which are longer than their repetitive

sequences respectively.

2.4 Extension tree and its simplification

Given a pattern P with Dep(P) > 0 and a character c, we define cP as a valid

backward extension of P if and only if Dep(cP) > 0. For a seed S, by adding

characters in the head base by base, we can construct a backward extension

tree Ts whose nodes are tagged with characters A, C, G, T, except for the

root node, which is tagged with Seed S. The label of a node v, denoted by

L(v), is the concatenation of tags from v to the root; W (v) is the weight of

the node v which is equal to depth of L(v).

Chapter 2. Algorithm 20

Backward extension tree is built recursively. The root tagged with S is firstly

created. For each newly created node v, if cL(v) is a valid backward extension

of L(v) for some character c in A, C, G, T, a new node is created as a child

of v and is tagged with c. Note that the label of a node will not be longer

than the read length, the depth of the tree is limited by the read length minus

the seed length. Moreover, for any node v in the tree, if Dep($L(v)) > 0, we

obtain the IDs of reads which have L(v) as a shared prefix and mark these

reads to avoid redundant assembly.

The consensus sequence for the backward extension tree is constructed by

walking down the tree from the root to a certain node. This process is called

consensus-walk. When visiting a node with only one child, the walk moves

on to that child. Otherwise we have to select a branch to move on or stop

immediately. A greedy algorithm, which chooses the child with the largest

weight, is straightforward but error-prone. Therefore, we introduce another

strategy, which we call reverse validation, to improve the probability of choos-

ing the correct branch. For simplicity, we describe our method for the case

of two branches. As shown in Figure 2.3, let v be the node that the consen-

sus is currently processing to, a and b be two children of v, tagged with ta

and tb respectively. Let C=L(v) be the consensus sequence we have already

constructed. The method incrementally calculates the depth of ta, taC[0],

taC[0...1], taC[0...2], etc. and tb, tbC[0], tbC[0...1], tbC[0...2], etc.

Below τ denotes a user-defined threshold. There are mainly two cases below

to determine the child used for further extension.

Case 1. If Dep(taC[0...i]) < τ and Dep(taC[0...i]) > 0 for some i, we im-

mediately conclude that a is an erroneous branch and b is authentic if it

demonstrates the following properties:

• Dep(taC[0...i-1]) is significantly larger than Dep(taC[0...i]).

• Dep(tbC[0...i])is significantly larger than Dep(taC[0...i]).

• The expected depth di+2 is significantly larger than Dep(taC[0...i]).

Case 2. if Dep(taC[0...i]) = 0 for some i, we conclude that the initial seed is

a false positive inferred-unique seed and a is near another copy of this seed

Chapter 2. Algorithm 21

Figure 2.3: Remove branches in backward extension tree. In the back-
ward extension tree, we try to remove erroneous branches, repetitive
branches and heterozygosis branches to obtain the consensus sequences of
the extended region. As an example, we meet node v with two child nodes a
and b. Firstly, combined with L(v), we obtained TL(v) for a and GL(v) for
b to detect erroneous branches between a and b. We incrementally calculate
the depth of sub-sequences of a(sub-ai with length i): T, TA, TAT, ..., and
b(sub-bi with length i): G, GA, GAT, ... until the depth of sub-a is less
than user-defined threshold τ . At the same time, if Dep(sub-ai) is signifi-
cantly smaller than Dep(sub-ai−1), Dep(sub-ai) is significantly smaller than
di and Dep(sub-bi) is significantly larger than Dep(sub-ai), then branch a
will be treated as a erroneous branch or repetitive branch. When there is
no erroneous signal, we will further try to remove the branch, which might
be caused by heterozygous. After obtaining two sequences representing
the consensus sequences of the sub-trees rooted at a and b respectively, we
compare the two sequences to find the matched region and get the depth
of it. Then we use this depth to calculate base depth and compare to the
base depth calculated by depth of initial seed. If the two sequences have
high similarity and the two depths are similar to each other, we will treat

a as heterozygous branch if W (a) is smaller than W (b).

in the genome, and a is named as a repetitive branch if it demonstrates the

following properties:

• Dep(taC[0...i-1]) is significantly larger than 0.

Chapter 2. Algorithm 22

• Dep(tbC[0...i]) is significantly larger than 0.

• di+2 is significantly larger than 0.

If we fail to identify the above two cases, an additional step will be introduced

to estimate whether the branches are due to heterozygous sites. Starting from

a and b, we use a greedy algorithm mentioned above to obtain two sequences

representing the consensus of the sub-trees rooted at a and b, respectively. If

the similarity of these two sequences is high enough, we make a prediction

that these two branches are caused by heterozygous sites, and walk to the

child with larger weight. Otherwise, the consensus-walk stopped at node v.

If the consensus-walk does not stop at the root of the tree, i.e. the consensus

sequence has been extent by at least one base pair from the seed, a new inferred

unique seed will be chosen from the prefixes of the consensus sequences to

start a new round. The process of seeding, backward extension and consensus

is repeated until the consensus-walk stops at the root of the extension tree

in some round. Then a series of symmetric processes follow, which forward

extend the initial seed. Finally the contig containing this initial seed, which is

the concatenation of the consensus sequences in both directions, is obtained

when the forward extension completes.

2.5 Application of paired-end information

Most of the NGS reads for genome assembly are sequenced from the two

terminates of DNA fragments forming paired-end reads. The length of the

DNA fragment is named as insert size. Paired-end information was designed to

solve repetitive sequences shorter than insert sizes. In the process of extension,

we store the read IDs, which have been used in the extended regions. Paired-

end reads have adjacent read IDs in bi-directional BWT. This makes it possible

to use paired-end information to resolve longer repetitive regions.

When the consensus-walk stops at the root of the extension tree, as shown in

Figure 2.4, suppose we have two children nodes a and b of root node v, reads

with $ falling in the sub-tree of a and sub-tree of b regions are divided into

R(a) and R(b). We check whether the paired reads of R(a) or R(b) have been

Chapter 2. Algorithm 23

CGAGCTTAGG ATTGAGGTGGAAAGCCGAGACCGATTT

T

G C

T A T

$

Extension direction

Initial seed
A

$

G

$ $

$ $

$

$

Rb1 Rb2 Rb3

Pair-Rb3
Pair-Rb2

Pair-Rb1

Ra1 Ra2 Ra3

sub-a

sub-b

Insert size

a

b

Figure 2.4: Application of paired-end information to remove branches in
extension tree. This method will be invoked only when the above methods
fail to remove the branches. And current branches are formed by the chil-
dren nodes of root node. Starting from a and b, we use a greedy algorithm
mentioned above to obtain the sub-trees rooted at a and b respectively, and
keep the read IDs with $ falling in each sub-tree. Then we check whether
their paired reads have been used in extended regions. If the paired read
ID(Pair-Rb3) is found in used read IDs and the distance between Rb3 and
Pair-Rb3 falls in the 3*SD region of Insert size, then we say branch b is
supported by Rb3 paired-end relation. If branch a is not supported by any
paired-end relations and branch b is supported by more than 2 paired-end
relations, we will only keep branch b, and remove branch a, so the extension

will turn to branch b.

used in the previous extended regions and whether the distances are proper

as estimated by their positions in this contig and their insert sizes. Without

loss of generality, if only paired reads of R(b) are found and the number is

larger than user-defined threshold τ mentioned above, the child node a will

be removed.

This method could be used to assemble repetitive sequences longer than read

length and obtain longer contig sequences. This is also an important point

compared with previous seed-extension based NGS assemblers.

2.6 Complexity

Given base number N as the total length of reads, read number R as the count

of reads, read length l, genome size G, Let ci be the number of overlaps for

read Ri, and C be the sum of ci. Here I will discuss the complexity of our

methods and compare it with other assemblers.

Chapter 2. Algorithm 24

In overlap/string graph based assemblers, the first step is to calculate the

complete set of overlaps among each read, which is the main bottleneck for

this kinds of assemblers. Simply, it will take time O(N2). With q-grams

mentioned in Mayers paper[42], a better performance could be achieved by

a time-space tradeoff to complexity O(N2/D), in which D is the amount of

available memory. In SGA, Simpson used FM-index to compute overlaps in

O(N+C) time[47]. Removing transitive is another challenge, but Simpson has

already solve it costing O(N) time. So overlap/string graph based assemblers

still have the time complexity O(N+C) for contig assembly.

In de Bruijn graph based assembler, such as SOAPdenovo, reads are firstly

spliced into k-mers using O(R*(l-k+1)) time. Once the graph has been con-

structed, it will obtain a graph containing O(G) nodes and O(G) edges, for

ideally repetitive-free genome and error-free sequencing data. Then the raw

contigs can be assembled with O(G) time. So totally, the time complexity is

O(R*(l-k+1)).

For BASE, the backward searching for a seed is O(s) when the length of seed

is s. To construct the extension tree, for its maximum depth is l-s, it only

need O(4*(l-s)) time. To simplify the extension tree, we need maximum time

O(l). Let x to be expected distance between two adjacent seeds, we need to

find O(G/(x+s)) seeds and finish O(G/(x+s)) extensions, so the global time

complexity is O(l*G/(x+s)). Then, in the worst case, we can only extend for

one base each time, we need to extend for O(G) times and the time complexity

would be O(l*G/(s+1)). This would happen if the sequencing depth N/G is

really high or the sequencing quality is too poor. Generally, l/(x+s) would be

less than 10, so the time complexity will be smaller than those of de Bruijn

graph based assemblers and string graph based assemblers.

Chapter 3

Implementation

I implemented the method mentioned above in BASE, to assemble longer NGS

reads. Before assembly, we firstly need to construct the bi-directional BWT

with Liu Chi-Man′s method. To make it convenient, it can load the assembly

configure file for SOAPdenovo. Then given the bi-directional BWTs, we can

use BASE to assemble large genomes or deeply sequenced bacterial genomes.

In the process of implementation, to assemble large genomes including human

genome, we mainly treated two problems to improve the contig coverage by

controlling the abundance and the speed to assemble with multiple threads.

These two points will be further explained in the following paragraphs.

3.1 Abundance controlling

In overlap/string graph, all the reads will be treated as nodes. In de Bruijn

graph based assemblers, k-mers are treated as nodes. In these assemblers, to

obtain contig sequences is to traverse all the nodes. However, in seed-extension

method, there are no such nodes and its a challenge to determine when the

read could be marked as used and when to stop finding a new seed.

One simple method is to mark the reads collecting by seed as used. When all

the reads are marked as used, we say the assembly has been finished. However,

in our method, there are surely false positive unique (FPU) seeds, as shown in

Figure 3.1. These seeds are falsely inferred as unique sequences, and the reads

25

Chapter 3. Implementation 26

CGAGCTTAGG ATTGGCAGGAC
v
A

C

C

T T
T

G

a

b

Extension direction

Initial seed

$
$

CCGAGCTTAGGATTCGCA

TCCGAGCTTAGGATTGGC
read1:

read2:

Figure 3.1: Marking used reads in seed-extension. For read1 and read2,
we will recover the part after initial seed region, such as ATTCGCA and
ATTGGC. Because there is a mismatch between read1 and extended se-
quence, read1 is not marked as used, but read2 is marked as used. When
the initial seed is a true positive unique seed, then read1 will be treated as
reads containing sequencing error, and would not form another extended
region longer than read length. When the initial seed is a false positive
unique seed and the mismatch C is from another copy region of initial seed,
then there is a possibility to assemble another copy when the near-C region

is covered by enough reads.

might be incorrectly collected and marked as used, which will result in the

low genome coverage of assembled contigs. This problem will become worse

in the following cases:

1) Reduce the starting overlap size to 19bp by default for large genome. It

means, there might be seeds with 19bp and more seeds might be inferred

falsely as unique. Then more reads will be falsely marked as used.

2) Increase the read length. When the sequencing depth is not changed, the

amount of reads will decrease for longer reads. Then more incorrectly

marked reads will cause more regions fail to be assembled, thus reduce

the genome coverage of contigs.

3) For genomes with higher repetitive content, such as plant genomes, or

when the sequencing bias is a bit severe, the rate of FPU reads will

increase, resulting lower genome coverage of assembled contigs.

To maintain the genome coverage of contigs, we need to avoid marking the

reads, which are inconsistent to the regions of assembled sequences. As shown

Chapter 3. Implementation 27

in Figure 3.1, we recover the regions of reads behind the seed, and com-

pare with extended regions to check the consistence. The advantage of this

treatment is to keep reads from another repeat copy as unused and could be

assembled later.

With this treatment, reads containing sequencing errors or heterozygous re-

gions will be not marked, until finding initial seeds in these reads. Even though

seeds could possibly be found in these reads, it is not easily to obtain extended

regions with length up to read length. So to control assembly abundance, ex-

tended sequences only with length no less than l will be kept as assembled

sequences. Another shortage of this treatment is the time for assembly will

become longer. Theoretically, we need to recover all the reads containing the

seed, and compare parts of them to the extended region. This part could be

improved in the future.

3.2 Multiple threads

To speed up contig assembly, I also developed the multi-thread version, which

mainly contains three parts. The first part is to find a read, in which we can

find a initial seed. The second part is to mark a read as used and the third

one is to remove the marks of reads used in the thread with lower priority

when it meets another thread.

To improve efficiency, with the help from our lab, I used compare and swap(CAS)

operation to avoid locking in threads. Then the challenge is how to recognize

and treat the thread conflictions. Likely to graph-based assemblers, when two

or more threads treat one read at the same time, the thread with higher prior-

ity will be continued and other threads will be terminated. To support these

operations, as shown in Figure 3.2, we used the unused bits in bi-directional

BWT, by dividing them into quality-bits, thread-bits, used-bits and current-

bits. For one read with length l, there will be l bits left in BWT and l bits

left in revBWT. l-1 bits in BWT are used to keep the quality bits, in which 1

means the base has high sequencing quality by a user-defined threshold. The

last eight bits in revBWT are used to keep the used mark (whether the read

Chapter 3. Implementation 28

Q 0 1 1 - 1 0 0 Q 0 0 0 Q 0 0 1 Q 0 1 0

U 0 0 0 C 0 0 1 T 0 1 0 T 0 1 1 T 1 0 0

ACGT$
Seq

T$ACG

ACGT$

BWT

Q: quality-bit, T: thread-bit, U: used-bit, C: current-bit, -: blank-bit

reversed

normal

TGCA$

Figure 3.2: Bits for bi-directional BWT. For each read, there is a BWT
for the read sequence and a revBWT for its reversed sequence. Each char-
acter in BWT or revBWT is stored with four bits, with last three bits for
characters A,C,G,T and $. The first bits in BWT store sequencing qual-
ity information for each character, except that the first bit for $ is unused
currently. The last six first-bits in revBWT store the thread id which is
transformed into bits (thread id<64), the last seventh first-bit is used to
mark whether the read is currently under-processed in one thread and the
last eighth first-bit is used to mark whether read is used in assembly before.
So for 100bp read, 92 first-bits in revBWT is still blank-bits. If a used read
is met in the extension of one thread, with current-bit, we can determine

whether there are two threads meet together.

have been assembled already), current mark (whether the read is being used

in one thread) and thread id.

In the first part, to find an initial read, which might contains an initial seed to

start an extension, we need to check whether the read has been used or not.

To avoid meeting the same read in different threads and to make it easy to use

multiple BWTs, each thread only checks the thread id*i-th reads in BWTs (i

is a integer). Then we get the values in the last eighth first-bit in revBWT to

check whether this read has been assembled. If it has been assembled, then

this thread will evaluate thread id*(i+1)-th read.

In the second part, when one extension has been finished and the checked

reads should be marked as used, we mark the used-bit, current-bit and thread

id-bits at the same time with CAS operation shown as Figure 3.3.

In the third part, we need to recognize the case multiple threads meet at one

read. Here when one read is going to be marked in one thread, we firstly

recognize whether it is already assembled with used-bit equal 1. If yes, one

case is that it has been used in one thread and the extension has finished with

current-bit equal 0. Then we only stop extension of current thread because

we might meet a region, which has already been assembled. The other case

is that it is used in another thread and the extension in this thread has not

Chapter 3. Implementation 29

set_read_sparse_thread (idx2BWT , id , threadId)
bwt <- idx2BWT -> rev_bwt
new_word <- ((unsigned int)(1) << 31) | ((unsigned int) (1) << 27)
new_word |= id_to_sparse_word[threadId]
blank_word <- ~((unsigned int) (id_to_sparse_word[63]))
while (1)

 oldvalue <- bwt -> bwtCode[id]
 if(bwt->bwtCode[id] >> 31)
 return 0
 newvalue <- oldvalue & blank_word | new_word
 if(__sync_bool_compare_and_swap (&(bwt->bwtCode[id]), oldvalue, newvalue))
 return 1

Figure 3.3: CAS operation to mark read as used.

yet finished with current-bit equal 1. In this case, we need to further check

whether this read has just been used in current thread before, so we obtain

the thread id kept in thread-bits and compare it with current thread id. If

the two thread ids are the same, we need to stop extension for current thread

to avoid endless loop. If they are different, this means two threads meet at

this read. So we stop current thread, clear the used-bits and current-bits of

reads used in current thread using CAS operation. To support this operation,

we temperately keep the read ids, their positions in current extending contigs.

This will also support the application of paired-end information mentioned in

Chapter 2. The initial read of this thread will invoke a new thread later if it

is still not used then.

The multiple threads version is especially useful to assemble contigs of large

genomes. Because it is still quite difficult to terminate a thread by recognizing

the sufficient enough coverage of genome by assembled contigs, it is suggested

not to use the multiple threads version when assembling small genomes.

Chapter 4

Benchmarks and evaluation

4.1 Datasets

To test the performance of BASE, I used several sets of real data, including two

bacterial Staphylococcus aureus MW2 240X HiSeq 100bp reads (SRR857914)[16],

V. parahaemolyticus 240X MiSeq 250bp reads (DRX016227)[40], and four hu-

man sequencing data sets including YH Solexa 100bp reads[36], YH HiSeq

150bp reads (BGI), NA12878D HiSeq X Ten 150bp data (DNAnexus.com)

and NA12878 HiSeq 250bp data (SRR891258, SRR891259). All raw sequenc-

ing data were pre-processed with SOAPfilter[36] to remove reads containing

excessive amount of Ns or adapters, low quality reads and duplicated reads.

The four human datasets were further corrected with SOAPec[36] using 23-

mer.

4.2 Evaluation

Using reference genomes for Staphylococcus aureus MW2 [1] and V. para-

haemolyticus (RIMD2210633), I evaluated the accuracy of assembly using the

GAGE pipeline[39], in which metrics such as correct N50 size, mismatch, align

rate and coverage were assessed. N50 value is the length of the shortest contig

such that the total length of contigs no shorter than it can cover 50% of the

genome. If the reference genome is known, after mapping contigs to reference

30

Chapter 4. Result 31

sequences, we break contigs at each error site, calculate N50 of these broken

sequences, and get correct N50. Align rate is the length of contigs, which could

be mapped to reference sequences, divided by the length of all contigs. Low

align rate generally means there are false assembled contigs. Coverage is the

length of reference regions, to which contigs can be mapped, divided by the to-

tal length of reference sequences. Low coverage generally means some regions

are failed to be assembled. For YH and NA12878, I mapped the assembled

contigs to Hg19 with LAST[19] and evaluated the alignment rate, reference

coverage and repeat-masked reference coverage. To prove the performance

of BASE, I compared the assembly performances of BASE to those of some

popular assemblers, including SGA (first string graph NGS reads assembler),

SOAPdenovo2 (a popular large genome de Bruijn graph based assembler),

SPAdes (a powerful multi-kmer de Bruijn graph based assembler).

4.3 Contig assembly of deeply sequenced bac-

terial genomes

I randomly fished 240X from the raw datasets for two bacterial genomes. Then

I tried different parameters for SOAPdenovo2 and SGA to obtain their best

assembly results.

As shown in the bacterial assembly (Table 4.1), BASE obtains contigs with the

highest accuracy among all evaluated assemblers and is the only assembler that

achieve 100% alignment rate. Except four trans-locations of SPAdes in dataset

of V.para, trans-locations assembled by BASE, SGA and SOAPdenovo2 are

all caused by circular DNA and are not shown.

For the 100bp dataset of S.aureus, the correct N50 statistics of BASE is much

shorter than that of SPAdes and is only a bit longer than that of SGA and

SOAPdenovo2. Further analysis showed that BASE’s improvement over SGA

and SOAPdenenovo2 is mainly due to the usage of paired-end information. For

the 250bp dataset of V.para, the correct N50 from BASE is indeed comparable

to that of SPAdes and is much longer than that of SGA and SOAPdenovo2.

Increased minimum overlap size to 149bp also increased the assembly length

of SGA, but larger minimum overlap size will further reduce the assembly

Chapter 4. Result 32

Table 4.1: Contig assembly of deeply sequenced bacterial genomes

Tools Parameters
Correct Mismatch Aligned Coverage Time

N50 /Indel Rate(%) (%) (sec)

S.aureus MW2
(240X, 100bp)

SPAdes 51,63,85 299,305 134/6 99.79 100.00 1239
SOAP2 87-95 82,495 40/0 99.84 99.27 25;16

SGA 29;91 74,584 7/0 99.81 99.98 1228;1149
BASE 4 92,706 0/0 100.00 99.97 161; 93

V.para (240X,
250bp)

SPAdes 33,55,65,75,85,99 169,978 118/45 99.97 99.97 4616
SOAP2 125 88,858 23/30 99.98 99.98 110;1

SGA 29;149 95,711 58/26 99.80 99.97 2478;2884
BASE 4 159,715 29/29 100.00 99.75 676;388

S.aureus MW2 has its real reference with length 2.8Mb and V.para has its species reference with length
5.1Mb and two chromosomes. GAGE validation pipeline was used to calculate the corrected contig N50,
base errors, structural errors, contig aligned rate and reference coverage. Except BASE used single thread
for contig assembly part, and other the assemblies were all performed with 24 threads. The time before
semicolon is for index building and after semicolon is for assembly. For SGA, indexing time contains the
time used in the indexing after error correction and filtering; assembly time contains the time used in the
overlap and assembly. In this table, we use SOAP2 to stand for SOAPdenovo2.

length (not shown). For SOAPdenovo2, currently the longest k size could be

127mer, which is still shorter than 149bp used in SGA.

SPAdes can obtain the longest assembly, with the most amounts of mismatches

and costing the longest time as expected. As shown in Table 4.1, BASE takes

slightly longer time in building index and assembling contigs than SOAPden-

ovo2, but is much faster than SPAdes and SGA. The coverage of contigs from

BASE is relatively low, which could be improved by devoting more time to

initialize more extension or by scaffolding like SOAPdenovo2.

In summary, for deeply sequenced bacterial, BASE can obtain long assemblies,

with high accuracy and quite fast speed, showing its can achieve better balance

of assembly metrics on longer NGS reads.

4.4 Contig assembly of human genomes

I further tested human genome assembly with four datasets: YH 100bp 35X,

YH 150bp 63X, NA12878 XTen 150bp 35X and NA12878 HiSeq 250bp 45X.

With 30X 100bp reads, it already took SGA more than 2 days [15] and Fermi

nearly five days [16] to output the contigs. So here I only compared BASE

with SOAPdenovo2.

Chapter 4. Result 33

Table 4.2: Summary of human contig assembly

YH,100bp YH,150bp NA12878, 150bp NA12878, 250bp

SOAP2
BASE

SOAP2
BASE

SOAP2
BASE

SOAP2
BASE

k=41 k=61 k=41 k=61
Contig num(M) 3.42 3.32 2.28 2.15 8.07 1.93 1.42 1.51
Contig size(Gbp) 2.67 2.88 2.76 2.95 2.44 2.90 2.60 2.94
Contig N50 2,244 2,279 3,008 3,126 1,140 3,823 3,368 4,199
Contig aligned rate(%) 99.10 97.07 98.87 95.96 99.40 97.62 99.34 96.33
Genome coverage(%) 90.36 93.76 93.12 93.90 84.11 95.58 89.55 94.09
RepeatMasked coverage(%) 97.05 96.13 97.28 95.32 93.94 97.38 95.60 95.99
Exon coverage(%) 93.76 91.51 95.73 94.13 91.48 96.84 93.90 91.49
Mismatch base(Mbp) 2.74 3.48 2.91 3.84 2.30 3.46 2.54 3.75
Mismatch ratio(%) 0.103 0.121 0.105 0.130 0.094 0.119 0.098 0.128
Indel num 340,930 327,469 358,358 334,989 259,190 322,214 327,695 372,941
Indel base(Mbp) 1.41 1.59 1.69 1.74 1.09 1.60 1.40 1.95
Indel ratio(%) 0.053 0.057 0.062 0.061 0.045 0.057 0.054 0.069

We mapped the raw contigs to Hg19. Aligned rate is the contig-aligned length divided by total contig
length. To calculate genome coverage, the length of gap regions in Hg19 has been removed. For unique
coverage, the repetitive regions have been further removed. For SOAPdenovo2 contig assembly, we all
used single-kmer method and M1 to treat heterozygous regions. In this table, we use SOAP2 to stand for
SOAPdenovo2.

Table 4.3: Mismatches analysis for human genome assembly

Dataset Assembler Whole genome Whole Exon

Total VariantCall PublicSNP Novel Total VariantCall PublicSNP Novel
YH SOAP2 2,735,141 2,423,482 108,044 203,615 47,926 40,701 1,590 5,635

100bp BASE 3,479,046 2,872,396 208,351 398,299 47,515 42,124 1,724 3,667
YH SOAP2 2,911,990 2,613,670 113,037 185,283 46,002 43,151 1,148 1,703

150bp BASE 3,839,110 3,075,913 256,217 506,980 52,561 46,420 1,822 4,319
NA12878 SOAP2 2,301,111 2,025,220 109,497 166,394 39,702 35,644 1,740 2,318

150bp BASE 3,459,648 3,052,269 129,933 277,446 49,711 45,361 1,151 3,199
NA12878 SOAP2 2,554,785 2,122,144 130,806 291,835 42,744 35,890 1,936 4,918

250bp BASE 3,751,887 2,613,065 604,805 534,017 48,635 37,853 5,068 5,714

We mapped the assembled contigs to Hg19 and got the mismatches between each contig and reference
sequence. Then we used the detected SNPs and SNPs from published SNP databases to analysis these
mismatches in whole genome and exon regions respectively. “Total” means total number of mismatches
between contigs and reference sequences, of which “VariantCall” could be detected by
GATK-UnifiedGenotyper pipeline. For the left mismatches, published SNP of YH(from BGI) and
NA12878(from Illumina) further covers “PublicSNP” mismatches and the left uncovered are noted as
“Novel”, which are probably caused by mis-assembly. In this table, we use SOAP2 to stand for
SOAPdenovo2.

In all four human datasets, shown in Table 4.2 the N50 statistics of BASE

improves as read length increases, while SOAPdenovo2 does not show such

degree of improvement. BASE′s improvement over SOAPdenovo2 becomes

significant for 250bp reads. Similar to bacterial assembly, BASE′s genome

coverage, with repeat masked, is lower that of SOAPdenovo2. But BASE has

a overall higher genome coverage in each dataset. This suggests that BASE

is able to assemble more repetitive regions.

Chapter 4. Result 34

Table 4.4: Performance for human genome assembly

SOAPdenovo2 BASE
Wall Time CPU time Peak Mem Wall Time CPU time Peak Mem

(h) (h) (GB) (h) (h) (GB)

YH (36X, 100bp)

Index 4 46 163 5 18 200
Contig 2 2 41 4 53 140
Total 6 48 163 9 71 200

YH (64X, 150bp)

Index 6 75 201 11 36 192
Contig 1 1 33 5 80 225
Total 7 76 201 16 116 225

NA12878D (30X,
150bp)

Index 9 141 477 9 34 194
Contig 1 1 24 7 144 142
Total 10 141 477 16 178 194

For X Ten data, we used a different machine with larger memory to finish SOAPdenovo2 and BASE
assembly, so it is improper to compare the time usage of this dataset to other dataset. Other datasets
were all performed in the same machine with 24 CPU.

As shown in Table 4.3, assemblies of BASE usually have larger amount of mis-

matches, most of which are consistent to SNPs detected by GATK-UnifiedGenotyper

pipeline, and published SNPs(for the same set of reads). The left unknown

mismatches are generally considered to be caused by mis-assembly. However,

for more repetitive regions are assembled, BASE might generate more mis-

matches and indels, which are not easy to be proved whether they are new

assembly errors or not. Further analysis shows that in exon regions, amounts

of mismatches especially novel ones are quite similar for BASE and SOAPde-

novo2.

As shown in Table 4.4, for the 35X 100bp YH dataset, both BASE and

SOAPdenovo2 (in single-kmer mode) took only about half a day to obtain

the contigs. To assemble X Ten data (150bp reads), BASE used much less

memory than SOAPdenovo2 on indexing and contig assembly (Table 4.4).

This is probably due to the high error rate of the X Ten data, as shown in

17mer depth distribution of the three datasets in Figure 4.1. For the reason of

sequencing error, there is some inconsistence between theoretical complexity

and real time consuming.

4.5 Influence of read length on assembly

Currently, the sequencing read length has grown to 250bp for Illumina HiSeq

and more than 300bp for Illumina MiSeq. Then question is how long reads

Chapter 4. Result 35

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0.0E+00	

1.0E+07	

2.0E+07	

3.0E+07	

4.0E+07	

5.0E+07	

6.0E+07	

7.0E+07	

8.0E+07	

9.0E+07	

1.0E+08	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	

Ac
cu
m
ul
at
e	

fr
eq

ue
nc
y	

Fr
eq

ue
nc
e	

17mer	
 depth	

17mer	
 depth	
 distribuCon	
 of	
 three	
 human	
 dataset	

YH100	

YH150	

XT150	

YH100_accumulate	

YH150_accumulate	

XT150_accumulate	

Figure 4.1: 17mer depth distribution of three human sequencing dataset.
After counting the depth of all 17mers in the sequencing reads, we can
calculate the frequency of each depth. About 35% 17mers of YH 100bp
reads, 30% 17mers of YH 150bp reads and 53% 17mers of NA12878D XTen
reads having depth no more than 3. Then we say the NA12878D XTen reads
should have more sequencing errors left after raw data filter and correction

than other datasets.

BASE could assemble and whether the performance will become worse with

the growing of read length.

I simulated 30X reads with length from 100bp to 1kb for E.coli genome, using

wgsim[2]. Then I constructed the bi-directional BWT of these reads and

assembled contigs with BASE respectively. As shown in Table 4.5, it took

more time to construct the bi-directional BWT of reads with increasing of

read length. But the time usage was quite stable for contig assembly. As

expected, contig N50 increased with the growing of read length, especially

when the read length was longer than 250bp. It is necessary to mention

that for different species, this value would change for the different lengths

distribution of repetitive sequences.

Chapter 4. Result 36

Table 4.5: Assembly of E.coli simulated data

Read Insert Read CPU Index GPU Index Contig Contig Coverage
length size number time(sec) time(sec) time(sec) N50 (%)

100 170 675,000 57.46 50.539 32.9 62,872 98.59
150 250 450,000 71.36 58.776 29.89 68,555 98.62
250 450 270,000 101.72 84.391 28.53 133,550 98.86
500 950 135,000 185.27 124.033 28.1 178,941 99.42
750 1,450 90,000 263.03 211.259 28.48 179,327 99.63
1000 1,950 67,500 348.04 272.534 33.01 191,128 99.60

CPU Index time stands for the time used by improved CPU version to construct bi-directional BWT.
GPU Index time stands for the published GPU version to construct bi-directional BWT.

Chapter 5

Conclusion

The primary objective of this research is to study whether a seed-extension

approach to contig assembly, coupled with reverse validation, can give a perfor-

mance (accuracy and N50) comparable to SOAPdenovo2 and SGA. As shown

in the previous section, the new approach gives clear advantage for longer

reads, and with speed much higher than SGA and comparable to SOAPden-

ovo2, and stable memory usage (i.e., not sensitive to error rate of the reads).

The contigs obtained by BASE are longer and cover more repetitive sequences

than those from SOAPdenovo2 and SGA.

Based on the high quality contigs assembled by BASE, one could use less

accurate third generation reads or paired-end reads with longer insert size

for scaffolding and gap closing. This approach has been used in a recently

published assembler DBG2OLC[52], which assembles second level contigs onto

high accurate DBG contigs. Indel or SV could also be detected with these

contigs using established methods[28].

With the increasing length of high quality Illumina reads, it is of computa-

tional interest how to fully utilize the read length information in contig as-

sembly. SGA, Fermi and our tool BASE both build an index of the reads and

make it possible to assemble high-depth short reads without splitting them

into k-mers. Although SGA and Fermi could finish assembly with less mem-

ory, they need much longer time. As noted in MEGAHIT[27], the requirement

for big memory machine can be circumvented. For future bioinformatics anal-

ysis including assembly, it is time and robustness that matter most. I plan to

37

Chapter 5. Conclusion 38

further reduce the running time of BASE and build up the pipelines for BASE

to support assembly solutions for especially large genomes.

Chapter 6

Discussion and Future Work

High quality contig assembly is the first step for the applications of NGS data.

In the following paragraphs, I will describe the genome assembly solutions

using BASE, one with paired-end reads and the other with third generation

sequencing reads. These will be implemented and used in the quite near

future.

Compared with SOAPdenovo2, which we have published in the end of 2012[36],

BASE is designed especially for the increasing sequencing length of NGS data.

In the process to assemble oyster genome[54] and YH fosmid[8], we have met

a great challenge to obtain the high quality scaffolds using paired-end NGS

reads and highly overlapped contigs. Contigs from BASE have longer ex-

pected overlap lengths than contigs from SOAPdenovo2, so it is also facing

the challenge to obtain better scaffolds. To solve this problem, as shown in

Figure 6.1, we designed and implemented the Uniqer and paired-end reads

Mapper for BASE. Uniqer is to find the minimum unique length for each po-

sition in BASE contigs, and Mapper ensures that the mapping length of short

reads to contig should be no shorter than this minimum unique length. The

idea of minimum unique length was already used in the mutation detection

tool using BWT of reads[20]. In this way, we can obtain high quality contig

relations for scaffolding, by avoiding false mapping caused by repetitive se-

quences. After obtaining high quality contig relations, we use SOAPscaf to

build the scaffolds, which is separated from SOAPdenovo2 and modified to fit

for the feature of BASE contigs. In our immature practice, we can obtain the

39

Chapter 6. Discussion and Future Work 40

10M scaffolds N50 for YH genome using dataset YH100bp. More improvement

of this part will be further developed in the future.

With the development of the third generation sequencing (TGS) technologies

like PacBio and Nanopore, more and more genomes are also sequenced and

willing to be assembled with them. The advantage of TGS reads currently is

kbp read length. But the shortage is their poor sequencing accuracy 85%[21]

or even much lower[26, 38]. To directly assemble Nanopore raw data with

Celera Assembler, it might even fail to output a single contig[15]. So, by

using NGS and TGS reads together, there are two main candidate solutions

for this hybrid assembly. One is to use NGS reads to correct the sequencing

errors in TGS reads[3, 21, 38]. The other one is to assemble NGS reads at

first and then map the assembled sequences to TGS reads to further assemble

second-level contigs[51, 52] or close the gaps within scaffolds[11].

In the first solution, the earliest research directly mapping the NGS reads to

TGS reads, which costs lots of computation and memory[21] and is improper

for large genome assembler. Later, researchers in BGI tried to use SOAPden-

ovo assembled contigs to correct PacBio reads, which is much more efficient.

In Madoui’s research[38], NGS reads were also firstly mapped to Nanopore

reads and named them as seed-reads. Then, seeds is found in these reads and

is used to recruit more similar NGS reads as recruited-reads. These two types

reads are assembled with OLC methods to obtain contigs, these contigs will

build a contig graph and weighted by their relations in Nanopore reads. In

this way, Madoui’s method could be treated as the combination of the two

solutions, but one of the key problems is still the assembly of NGS reads.

Most of the left un-assembled large genomes are generally not easy to treat,

such as Peony with 14Gbp genome size and amounts of repetitive sequences.

For these species, only sequenced by NGS reads can not obtain an accept-

able results and most projects aim to hybrid assembly introduced above. To

provide an efficient solution for hybrid assembly of large genomes, our efforts

are focusing on two points. The first is to assemble NGS reads in high qual-

ity with BASE. Given 250bp and 150bp reads, BASE is expected to obtain

longer contigs than SOAPdenovo2 and PacBio reads could be better mapped

to them. This mapping efficiency is surely higher than mapping NGS reads

to TGS reads. The other effort is Uniqer. Most of confusions in assembly

Chapter 6. Discussion and Future Work 41

are caused by repetitive sequences. And it is really a challenge to recognize

the repetitive sequences in NGS reads, TGS reads and NGS assembled con-

tigs. Uniqer, using the bi-directional BWT of NGS reads, with the uniformity

hypothesis of sequencing, can be used to infer the minimum unique length

in any sequences. This should be able to reduce the repetitive-caused false

mapping, thus plays a positive role in the following correction of TGS reads,

or second-level assembly of contigs, or close the gaps within scaffolds.

In summary, it is possible to support a whole large genome assembly solution

with BASE and I will put more effort to use BASE to solve the assembly of

more genomes.

Chapter 6. Discussion and Future Work 42

NGS reads

SOAPdenovo
pregraph

SOAPdenovo
contig

SOAPdenovo
map

SOAPdenovo
scaf

SOAPdenovo
gapclosing

Bi-directional
BWT

BASE

Uniqer

SOAPscaf

Kgf
gapclosing

Pair-End
Mapper

DBG2OLC

PacBio
Mapper

SOAPdenovo assembly
pipeline

BASE NGS assembly
pipeline

BASE hybrid
assembly pipeline

Figure 6.1: Two pipelines for genome assembly using BASE. The stan-
dard assembly pipeline of SOAPdenovo2 includes more than five steps.
For BASE contigs to obtain final assembly results, we have two candidate
pipelines. With paired-end short reads, we developed Uniqer and Mapper
to map reads to contigs to obtain contig relations. With these contig rela-
tions and specially modified SOAPscaf, we can obtain scaffolds. Using Kgf
developed by me in BGI, we can close the gaps of BASE scaffolds to obtain
final assembly results. With PacBio sequencing data, we are developing a
new mapper combined with Uniqer to obtain the relations between contigs
and PacBio reads. Then we can obtain final assemblies with DBG2OLC or

similar second level assemblers.

Bibliography

[1] Reference of staphylococcus aureus mw2. www.genomic.ch/edena/

results2013/ReferenceSequences.

[2] wgsim. https://github.com/lh3/wgsim.

[3] Kin Fai Au, Jason G Underwood, Lawrence Lee, and Wing Hung Wong.

Improving PacBio Long Read Accuracy by Short Read Alignment. PLoS

ONE, 7(10):e46679, Oct 2012.

[4] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gure-

vich, Mikhail Dvorkin, Alexander S Kulikov, Valery M Lesin, Sergey I

Nikolenko, Son Pham, Andrey D Prjibelski, Alexey V Pyshkin, Alexan-

der V Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A Alekseyev, and

Pavel A Pevzner. SPAdes: A New Genome Assembly Algorithm and Its

Applications to Single-Cell Sequencing. Journal of Computational Biol-

ogy, 19(5):455–477, May 2012.

[5] Liu Binghang, Shi Yujian, Yuan Jianying, Hu Xuesong, Zhang Hao,

Li Nan, Li Zhenyu, Chen Yanxiang, Mu Desheng, and Fan Wei. Es-

timation of genomic characteristics by analyzing k-mer frequency in de

novo genome projects. http://arxiv.org/pdf/1308.2012, Aug 2013.

[6] Keith R Bradnam and Fass. Assemblathon 2: evaluating de novo methods

of genome assembly in three vertebrate species. GigaScience, 2(1):10, Jul

2013.

[7] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression

algorithm. Technical report, 1994.

[8] Hongzhi Cao, Honglong Wu, Ruibang Luo, Shujia Huang, Yuhui Sun,

Xin Tong, Yinlong Xie, Binghang Liu, Hailong Yang, Hancheng Zheng,

43

www.genomic.ch/edena/results2013/ReferenceSequences
www.genomic.ch/edena/results2013/ReferenceSequences
https://github.com/lh3/wgsim

Bibliography 44

Jian Li, Bo Li, Yu Wang, Fang Yang, Peng Sun, Siyang Liu, Peng Gao,

Haodong Huang, Jing Sun, Dan Chen, Guangzhu He, Weihua Huang,

Zheng Huang, Yue Li, Laurent C A M Tellier, Xiao Liu, Qiang Feng,

Xun Xu, Xiuqing Zhang, Lars Bolund, Anders Krogh, Karsten Kris-

tiansen, Radoje Drmanac, Snezana Drmanac, Rasmus Nielsen, Songgang

Li, Jian Wang, Huanming Yang, Yingrui Li, Gane Ka-Shu Wong, and

Jun Wang. De novo assembly of a haplotype-resolved human genome.

Nature Biotechnology, 33(6):617–622, Jun 2015.

[9] Yen-Chun Chen, Tsunglin Liu, Chun-Hui Yu, Tzen-Yuh Chiang, and Chi-

Chuan Hwang. Effects of GC bias in next-generation-sequencing data on

de novo genome assembly. PLoS ONE, 8(4):e62856, 2013.

[10] The Tomato Genome Consortium. The tomato genome sequence provides

insights into fleshy fruit evolution. Nature, 485(7400):635–641, May 2012.

[11] Adam C English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee,

Jiaxin Qu, Xiang Qin, Donna M Muzny, Jeffrey G Reid, Kim C Worley,

and Richard A Gibbs. Mind the Gap: Upgrading Genomes with Pacific

Biosciences RS Long-Read Sequencing Technology. PLoS ONE, 7(11):

e47768, Nov 2012.

[12] P. Ferragina and G. Manzini. Opportunistic data structures with appli-

cations. In Foundations of Computer Science, 2000. Proceedings. 41st

Annual Symposium on, pages 390–398, 2000. doi: 10.1109/SFCS.2000.

892127.

[13] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro,

Joshua N. Burton, Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P.

Shea, Sean Sykes, Aaron M. Berlin, Daniel Aird, Maura Costello, Riza

Daza, Louise Williams, Robert Nicol, Andreas Gnirke, Chad Nusbaum,

Eric S. Lander, and David B. Jaffe. High-quality draft assemblies of

mammalian genomes from massively parallel sequence data. Proceed-

ings of the National Academy of Sciences, 108(4):1513–1518, 2011. doi:

10.1073/pnas.1017351108. URL http://www.pnas.org/content/108/

4/1513.abstract.

http://www.pnas.org/content/108/4/1513.abstract
http://www.pnas.org/content/108/4/1513.abstract

Bibliography 45

[14] Giorgio Gonnella and Stefan Kurtz. Readjoiner: a fast and memory

efficient string graph-based sequence assembler. BMC Bioinformatics,

13:82, 2012.

[15] Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Desh-

pande, Michael Schatz, and W Richard McCombie. Oxford nanopore

sequencing, hybrid error correction, and de novo assembly of a eukary-

otic genome. bioRxiv, 2015. doi: 10.1101/013490.

[16] David Hernandez, Ryan Tewhey, Jean-Baptiste Veyrieras, Laurent

Farinelli, Magne sters, Patrice Franois, and Jacques Schrenzel. De novo

finished 2.8 mbp staphylococcus aureus genome assembly from 100 bp

short and long range paired-end reads. Bioinformatics, 30(1):40–49, 2014.

doi: 10.1093/bioinformatics/btt590. URL http://bioinformatics.

oxfordjournals.org/content/30/1/40.abstract.

[17] Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, and Wing-Kin Sung.

Constructing compressed suffix arrays with large alphabets, 2007.

[18] RAMANA M IDURY and Michael S. Waterman. A New Algorithm for

DNA Sequence Assembly. Journal of Computational Biology, 2(2):291–

306, Jan 1995.

[19] Szymon M Kie lbasa, Raymond Wan, Kengo Sato, Paul Horton, and Mar-

tin C Frith. Adaptive seeds tame genomic sequence comparison. Genome

Research, 21(3):487–493, Mar 2011.

[20] Kouichi Kimura and Asako Koike. Ultrafast SNP analysis using the

Burrows–Wheeler transform of short-read data. Bioinformatics, Jan

2015.

[21] Sergey Koren, Michael C Schatz, Brian P Walenz, Jeffrey Martin, Ja-

son T. Howard, Ganeshkumar Ganapathy, Zhong Wang, David A Rasko,

W Richard McCombie, Erich D Jarvis, and Adam M Phillippy. Hybrid er-

ror correction and de novo assembly of single-molecule sequencing reads.

Nature Biotechnology, 30(7):693–700, Jul 2012.

[22] T W Lam, W K Sung, S L Tam, C K Wong, and S M Yiu. Compressed

indexing and local alignment of DNA. Aug 2008.

http://bioinformatics.oxfordjournals.org/content/30/1/40.abstract
http://bioinformatics.oxfordjournals.org/content/30/1/40.abstract

Bibliography 46

[23] T.W. Lam, Ruiqiang Li, A. Tam, S. Wong, E. Wu, and S.M. Yiu. High

throughput short read alignment via bi-directional bwt. In Bioinformatics

and Biomedicine, 2009. BIBM ’09. IEEE International Conference on,

pages 31–36, Nov 2009. doi: 10.1109/BIBM.2009.42.

[24] Eric S. Lander and Michael S. Waterman. Genomic mapping by fin-

gerprinting random clones: A mathematical analysis. Genomics, 2(3):

231–239, Apr 1988.

[25] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with

Bowtie 2. Nature Methods, 9(4):357–359, Apr 2012.

[26] T Laver, J Harrison, P A O’Neill, A Farbos, K Paszkiewicz, and D J

Studholme. Assessing the performance of the Oxford Nanopore Tech-

nologies MinION. Biomolecular Detection and Quantification, Feb 2015.

[27] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-

Wah Lam. MEGAHIT: an ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph. Bioinfor-

matics, 31(10):1674–1676, May 2015.

[28] Heng Li. Exploring single-sample SNP and INDEL calling with whole-

genome de novo assembly. Bioinformatics, 28(14):1838–1844, Jul 2012.

[29] Heng Li and Richard Durbin. Fast and accurate short read alignment

with Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760, Jul

2009.

[30] Heng Li, Jue Ruan, and Richard Durbin. Mapping short DNA sequenc-

ing reads and calling variants using mapping quality scores. Genome

Research, Apr 2008.

[31] R Li, C Yu, Y Li, T W Lam, S M Yiu, K Kristiansen, and J Wang.

SOAP2: an improved ultrafast tool for short read alignment. Bioinfor-

matics, 25(15):1966–1967, Jul 2009.

[32] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. SOAP:

short oligonucleotide alignment program. Bioinformatics, Jan 2008.

Bibliography 47

[33] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang,

Zhongbin Shi, Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen,

Songgang Li, Huanming Yang, Jian Wang, and Jun Wang. De novo as-

sembly of human genomes with massively parallel short read sequencing.

Genome Research, 20(2):265–272, Feb 2010.

[34] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang Luo, Siu-Ming Yiu,

Yingrui Li, Bingqiang Wang, Chang Yu, Xiaowen Chu, Kaiyong Zhao,

Ruiqiang Li, and Tak-Wah Lam. SOAP3: ultra-fast GPU-based parallel

alignment tool for short reads. Bioinformatics, 28(6):878–879, Mar 2012.

[35] Chi-Man Liu, Ruibang Luo, and Tak-Wah Lam. GPU-Accelerated BWT

Construction for Large Collection of Short Reads. Jan 2014.

[36] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang,

Jianying Yuan, Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, Jingbo

Tang, Gengxiong Wu, Hao Zhang, Yujian Shi, Yong Liu, Chang Yu,

Bo Wang, Yao Lu, Changlei Han, David W Cheung, Siu-Ming Yiu, Shao-

liang Peng, Zhu Xiaoqian, Guangming Liu, Xiangke Liao, Yingrui Li,

Huanming Yang, Jian Wang, Tak-Wah Lam, and Jun Wang. SOAP-

denovo2: an empirically improved memory-efficient short-read de novo

assembler. GigaScience, 1(1):18, Dec 2012.

[37] Ruibang Luo, Thomas Wong, Jianqiao Zhu, Chi-Man Liu, Xiaoqian Zhu,

Edward Wu, Lap-Kei Lee, Haoxiang Lin, Wenjuan Zhu, David W Che-

ung, Hing-Fung Ting, Siu-Ming Yiu, Shaoliang Peng, Chang Yu, Yingrui

Li, Ruiqiang Li, and Tak-Wah Lam. SOAP3-dp: fast, accurate and sen-

sitive GPU-based short read aligner. PLoS ONE, 8(5):e65632, 2013.

[38] Mohammed-Amin Madoui, Stefan Engelen, Corinne Cruaud, Caroline

Belser, Laurie Bertrand, Adriana Alberti, Arnaud Lemainque, Patrick

Wincker, and Jean-Marc Aury. Genome assembly using Nanopore-guided

long and error-free DNA reads. BMC Genomics, 16:327, 2015.

[39] Tanja Magoc, Stephan Pabinger, Stefan Canzar, Xinyue Liu, Qi Su,

Daniela Puiu, Luke J Tallon, and Steven L Salzberg. GAGE-B: An Eval-

uation of Genome Assemblers for Bacterial Organisms. Bioinformatics,

Aug 2013.

Bibliography 48

[40] Mari Miyamoto, Daisuke Motooka, Kazuyoshi Gotoh, Takamasa Imai,

Kazutoshi Yoshitake, Naohisa Goto, Tetsuya Iida, Teruo Yasunaga,

Toshihiro Horii, Kazuharu Arakawa, Masahiro Kasahara, and Shota

Nakamura. Performance comparison of second- and third-generation se-

quencers using a bacterial genome with two chromosomes. BMC Ge-

nomics, 15:699, 2014.

[41] E W Myers. Toward simplifying and accurately formulating fragment

assembly. Journal of computational biology : a journal of computational

molecular cell biology, 2(2):275–290, 1995.

[42] Eugene W Myers. The fragment assembly string graph. Bioinformatics,

21 Suppl 2:ii79–85, Sep 2005.

[43] Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P

Fasulo, Michael J Flanigan, Saul A Kravitz, Clark M Mobarry, Knut H J

Reinert, Karin A Remington, Eric L Anson, Randall A Bolanos, Hui-

Hsien Chou, Catherine M Jordan, Aaron L Halpern, Stefano Lonardi,

Ellen M Beasley, Rhonda C Brandon, Lin Chen, Patrick J Dunn,

Zhongwu Lai, Yong Liang, Deborah R Nusskern, Ming Zhan, Qing Zhang,

Xiangqun Zheng, Gerald M Rubin, Mark D Adams, and J Craig Venter. A

Whole-Genome Assembly of Drosophila. Science, 287(5461):2196–2204,

Mar 2000.

[44] Yu Peng, Henry C M Leung, S M Yiu, and Francis Y L Chin. IDBA-UD:

a de novo assembler for single-cell and metagenomic sequencing data with

highly uneven depth. Bioinformatics, Apr 2012.

[45] P A Pevzner, H Tang, and M S Waterman. An Eulerian path approach

to DNA fragment assembly. Proceedings of the National Academy of

Sciences, 98(17):9748–9753, Aug 2001.

[46] Mihai Pop. Genome assembly reborn: recent computational challenges.

Briefings in Bioinformatics, 10(4):354–366, Jul 2009.

[47] Jared T Simpson and Richard Durbin. Efficient construction of an as-

sembly string graph using the FM-index. Bioinformatics, 26(12):i367–73,

Jun 2010.

Bibliography 49

[48] Jared T Simpson and Richard Durbin. Efficient de novo assembly of

large genomes using compressed data structures. Genome Research, 22

(3):549–556, Mar 2012.

[49] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein,

Steven J.M. Jones, and nan Birol. Abyss: A parallel assembler for short

read sequence data. Genome Research, 19(6):1117–1123, 2009. doi: 10.

1101/gr.089532.108.

[50] R L Warren, G G Sutton, S J M Jones, and R A Holt. Assembling

millions of short DNA sequences using SSAKE. Bioinformatics, 23(4):

500–501, Feb 2007.

[51] René L Warren, Chen Yang, Benjamin P Vandervalk, Bahar Behsaz,

Albert Lagman, Steven J M Jones, and Inanc Birol. LINKS: Scalable,

alignment-free scaffolding of draft genomes with long reads. GigaScience,

4:35, 2015.

[52] Chengxi Ye, Chris Hill, Sergey Koren, Jue Ruan, Zhanshan, Ma, James A

Yorke, and Aleksey Zimin. DBG2OLC: Efficient Assembly of Large

Genomes Using the Compressed Overlap Graph. Oct 2014.

[53] Daniel R Zerbino and Ewan Birney. Velvet: Algorithms for de novo short

read assembly using de Bruijn graphs. Genome Research, Aug 2008.

[54] Guofan Zhang, Xiaodong Fang, Ximing Guo, Li Li, Ruibang Luo, Fei Xu,

Pengcheng Yang, Linlin Zhang, Xiaotong Wang, Haigang Qi, Zhiqiang

Xiong, Huayong Que, Yinlong Xie, Peter W H Holland, Jordi Paps,

Yabing Zhu, Fucun Wu, Yuanxin Chen, Jiafeng Wang, Chunfang Peng,

Jie Meng, Lan Yang, Jun Liu, Bo Wen, Na Zhang, Zhiyong Huang, Qi-

hui Zhu, Yue Feng, Andrew Mount, Dennis Hedgecock, Zhe Xu, Yunjie

Liu, Tomislav Domazet-Lošo, Yishuai Du, Xiaoqing Sun, Shoudu Zhang,

Binghang Liu, Peizhou Cheng, Xuanting Jiang, Juan Li, Dingding Fan,

Wei Wang, Wenjing Fu, Tong Wang, Bo Wang, Jibiao Zhang, Zhiyu Peng,

Yingxiang Li, Na Li, Jinpeng Wang, Maoshan Chen, Yan He, Fengji Tan,

Xiaorui Song, Qiumei Zheng, Ronglian Huang, Hailong Yang, Xuedi Du,

Li Chen, Mei Yang, Patrick M Gaffney, Shan Wang, Longhai Luo, Zhi-

cai She, Yao Ming, Wen Huang, Shu Zhang, Baoyu Huang, Yong Zhang,

Bibliography 50

Tao Qu, Peixiang Ni, Guoying Miao, Junyi Wang, Qiang Wang, Chris-

tian E W Steinberg, Haiyan Wang, Ning Li, Lumin Qian, Guojie Zhang,

Yingrui Li, Huanming Yang, Xiao Liu, Jian Wang, Ye Yin, and Jun

Wang. The oyster genome reveals stress adaptation and complexity of

shell formation. Nature, 490(7418):49–54, Oct 2012.

[55] Xiao Zhu, Henry C M Leung, Francis Y L Chin, Siu-Ming Yiu, Guangri

Quan, Bo Liu, and Yadong Wang. PERGA: a paired-end read guided

de novo assembler for extending contigs using SVM and look ahead ap-

proach. PLoS ONE, 9(12):e114253, 2014.

	Declaration
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Genome assembly methods
	1.2.1 Overlap-Layout-Consensus (OLC) method
	1.2.2 De Bruijn Graph method
	1.2.3 Seed-Extension method
	1.2.4 Assembly challenge of repetitive sequences

	1.3 Application of bi-directional BWT
	1.3.1 Introduction to bi-directional BWT
	1.3.2 String matching with bi-directional BWT
	1.3.3 Contig assembly with BWT of reads

	1.4 Contributions

	2 Algorithm
	2.1 Preliminary
	2.2 Seed-extension assembly framework
	2.3 Seed selection
	2.4 Extension tree and its simplification
	2.5 Application of paired-end information
	2.6 Complexity

	3 Implementation
	3.1 Abundance controlling
	3.2 Multiple threads

	4 Benchmarks and evaluation
	4.1 Datasets
	4.2 Evaluation
	4.3 Contig assembly of deeply sequenced bacterial genomes
	4.4 Contig assembly of human genomes
	4.5 Influence of read length on assembly

	5 Conclusion
	6 Discussion and Future Work
	Bibliography

